A method in diophantine approximation (II)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On transfer inequalities in Diophantine approximation, II

Let Θ be a point in R. We are concerned with the approximation to Θ by rational linear subvarieties of dimension d for 0 ≤ d ≤ n−1. To that purpose, we introduce various convex bodies in the Grassmann algebra Λ(R). It turns out that our convex bodies in degree d are the d-th compound, in the sense of Mahler, of convex bodies in degree one. A dual formulation is also given. This approach enables...

متن کامل

Diophantine Approximation of Ternary Linear Forms . II

Let 6 denote the positive root of the equation xs + x2 — 2x — 1 = 0; that is, 8 = 2 cos(27r/7). The main result of the paper is the evaluation of the constant lim supm-co min M2\x + By + 02z|, where the min is taken over all integers x, y, z satisfying 1 g max (\y\, |z|) g M. Its value is (29 + 3),/7 = .78485. The same method can be applied to other constants of the same type.

متن کامل

Diophantine Approximation with Arithmetic Functions, Ii

We prove that real numbers can be well-approximated by the normalized Fourier coefficients of newforms.

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

A note on Diophantine approximation

Given a set of nonnegative real numbers Λ= {λi}i=0, a Λ-polynomial (or Müntz polynomial) is a function of the form p(x)=ni=0 aizi (n∈N). We denote byΠ(Λ) the space of Λ-polynomials and byΠZ(Λ) := {p(x)=ni=0 aizi ∈Π(λ) : ai ∈ Z for all i≥ 0} the set of integral Λ-polynomials. Clearly, the sets ΠZ(Λ) are subgroups of infinite rank of Z[x] wheneverΛ⊂N, #Λ=∞ (by infinite rank, wemean that the real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1968

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-13-4-383-393